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We conducted molecular clock analysis of whole-genome 
sequences from a set of autochthonous isolates of Cryp-
tococcus gattii sensu stricto from the southeastern United 
States. Our analysis indicates that C. gattii arrived in the 
southeastern United States approximately 9,000–19,000 
years ago, long before its arrival in the Pacific Northwest.

The Cryptococcus gattii species complex consists of >4 
major subtypes (VGI–VGIV), which are now consid-

ered to be different species (1). C. gattii species complex is 
often described as native to tropical and subtropical regions, 
but recent reports have shown that it is more cosmopolitan 
than previously thought (2). In North America, the emer-
gence of C. deuterogattii (VGII) in the Pacific Northwest of 
Canada and the United States generated a great deal of inter-
est in the study of C. gattii species complex in this area (3). 
Although this emergence was the impetus for the study of C. 
gattii species complex in the United States, this pathogen has 
actually been known and documented in the United States 
for multiple decades, especially in southern California (4). 
Despite its occurrence in the Pacific Southwest, the emer-
gence in the Pacific Northwest is thought to be quite recent. 
Recent work using Bayesian evolutionary analysis by sam-
pling trees generated using BEAST software showed that the 
emergence of C. deuterogattii in the Pacific Northwest was 
a recent event, occurring within the last 60–100 years (5).

Historical reports have described the presence of C. gat-
tii species complex in the southeastern United States, where 
documented clinical cases are rare. However, these cases are 
often unacknowledged by literature reviews because they 
occurred when C. gattii could only be detected as a unique 
serotype of C. neoformans, before it became known as a sep-
arate species (6). Although published reports have been rare, 
recent C. gattii cases have been reported in the southeastern 
United States (7–9). We recently described the population 
structure of 10 C. gattii sensu stricto (VGI) patient isolates 
from the southeastern United States (6). Here we describe  

selecting 8 of those same isolates and using BEAST software 
(http://beast.community) to predict the timing of the emer-
gence of C. gattii in the southeastern United States.

The Study
We identified single-nucleotide polymorphisms (SNPs) and 
conducted phylogenetic analyses as previously described 
(10). We identified 43,731 total SNPs among 8 isolates, 
based on a genome quality breadth of 16,991,136 bases. The 
maximum-likelihood tree (Figure) had a consistency index 
of 1.0, and all branching bootstrap values equaled 100 for 
100 replicates. Because all isolates in the southeastern United 
States group contain only the α mating type and the phyloge-
nies have a perfect consistency index (i.e., demonstrating no 
homoplasy), we assume a clonal expansion for this popula-
tion (i.e., lack of multiple mating types limits opportunity for 
recombination), although cryptic recombination cannot be 
ruled out. We therefore applied the clonal mutation rate ob-
tained from the prior Bayesian molecular clock analysis (us-
ing BEAST software [10]) of the Pacific Northwest C. gattii 
species complex, specifically for VGIIa and VGIIc (1.59 × 
10–8 SNPs/base/y). We determined the best-fitting clock and 
demographic model combination by implementing path and 
stepping stone sampling marginal-likelihood estimators as 
described previously (5). We implemented a general time-
reversible nucleotide substitution model and an uncorrelated 
log-normal molecular clock with a Bayesian skyline model 
across 4 chains with 3 billion iterations and achieved across- 
and within-chain convergence.

Employing these previously described methods with a 
log-normal Bayesian skyline model on the genomes from 
the 8 isolates from the southeastern United States, BEAST 
provided an estimated range of time to most recent common 
ancestor (tMRCA) of approximately 9,000–19,000 years. A 
general recombining population mutation rate for Crypto-
coccus was previously estimated at 2.0 × 10–9 (11), which is 
an order of magnitude slower than the estimated clonal rate; 
therefore, applying this rate provides for a tMRCA that is 
nearly an order of magnitude greater (77,000–148,000 years).

Conclusions
The clonal mutation rate appears to be more appropriate 
than the general mutation rate for recombining popula-
tions for estimating tMRCA, showing that the timing of C. 
gattii emergence and subsequent divergence in the south-
eastern United States is clearly much older than the Pacific  
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Northwest emergence. The sharp contrast in the time of ar-
rival compared with C. deuterogattii in the Pacific North-
west is considerable. Although C. gattii has apparently been 
in the southeastern United States for thousands more years 
than C. deuterogattii has been in the Pacific Northwest, the 
number of cases detected in the southeastern United States 
is far fewer. Infections in the South are probably not regu-
larly missed, given that C. gattii in the southeastern United 
States causes primarily a devastating meningitis or menin-
goencephalitis (6,9). Questions of whether subacute cases 
might be going undetected, whether the distribution of 
the fungus in the environment might be lower, or whether 
the niche is not readily accessible by humans remain un-
answered. We clearly know less about the Cryptococcus 
species that has been in the United States for thousands of 
years (C. gattii sensu stricto) than we know about the one 
that has only recently arrived (C. deuterogattii).

The Pacific Northwest emergence has been hypoth-
esized to be related to the opening of the Panama Canal, 
enabling more shipping from eastern ports of South Amer-
ica to the West Coast of North America (5). The estimated 
timing of emergence of C. gattii in the southeastern United 
States occurred long before industrial shipping. Although 
humans might have populated the southeastern United 
States by the time of the dispersal, most of the human 

movement was north to south rather than the reverse (12). 
This relatively recent emergence during the Pleistocene ep-
och is different from what has been hypothesized for other 
endemic mycoses, a much older fungal species dispersal 
resulting from mass migration of animal populations be-
tween continents (13). The idea of recent emergence also 
departs sharply from what has been hypothesized as a spe-
ciation attributable to prehistoric land movements, as has 
been proposed for larger Cryptococcus species separations 
(14). C. gattii sensu stricto has been found in and likely 
originates from South American locales (15). Besides an-
thropogenic means, possible dispersal mechanisms out of 
South America might have included animal, bird, or insect 
species migration or even ocean detritus brought by Ca-
ribbean currents or hurricanes. However, given the lack of 
population structure, dispersal probably occurred through 
a discrete event or through limited events from the same 
originating population. No matter the mechanism of ar-
rival, C. gattii has been hiding, mostly undetected, in the 
southeastern United States for millennia.
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Figure. Bayesian phylogenetic analyses of 8 isolates of Cryptococcus gattii sensu stricto from the southeastern United States. We 
used BEAST 1.8.4 software (http://beast.community) to produce calibrated phylogenies with the mean estimates of time to most recent 
common ancestor. The tips of the branches correspond to the year of sampling. Dotted node bars are shown for each node and indicate 
95% CIs for the timing estimate. The timeline represents years before the present day.
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